KS3 Mastery SoL

Curriculum Objectives in more detail

$\begin{aligned} & n \\ & \frac{n}{0} \\ & \sim \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{u} \\ & \ddot{\#} \\ & \stackrel{y}{3} \end{aligned}$	$\begin{aligned} & N \\ & \stackrel{y}{u} \\ & \text { U } \\ & 3 \end{aligned}$	$\begin{aligned} & m \\ & \ddot{\#} \\ & \text { \# } \\ & 3 \end{aligned}$	$\begin{aligned} & \text { 寸 } \\ & \text { 〒 } \\ & \text { U } \\ & 3 \end{aligned}$	$\begin{aligned} & \text { n } \\ & \frac{\square}{U} \\ & \frac{1}{3} \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{v}{u} \\ & \frac{1}{3} \end{aligned}$	$\begin{aligned} & \text { E } \\ & \text { U } \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & \underline{5} \\ & \pm \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & \underset{\sim}{u} \\ & \text { \# } \\ & \text { U } \end{aligned}$	$\begin{aligned} & N \\ & \stackrel{y}{u} \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { m } \\ & \stackrel{\#}{4} \\ & \stackrel{\sim}{3} \end{aligned}$	$\begin{aligned} & \text { 寸 } \\ & \text { « } \\ & \text { U } \\ & 3 \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { u } \\ & \text { U } \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{v}{0} \\ & 0 \\ & 3 \end{aligned}$	N U U 3		
	Place value and estimation		Addition and Subtraction		AQA test 1 Applications of add／ subtraction \＆worded		エ	I	Multiplication and Division		Applications of multn \＆ division		Factors，HCF， multiples，LCM				
			$\begin{aligned} & \overline{0} \\ & \text { O} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$$													
$\begin{aligned} & \sum_{\substack{0}}^{\underline{O}} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{u} \\ & \bar{u} \\ & \text { U } \\ & 3 \end{aligned}$			$\begin{aligned} & N \\ & \stackrel{\rightharpoonup}{u} \\ & \text { U } \\ & 3 \end{aligned}$	$\begin{aligned} & m \\ & \stackrel{y}{u} \\ & \stackrel{1}{3} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{u} \\ & \text { U } \\ & \text { ¿ } \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { u } \\ & \text { \& } \end{aligned}$	$\begin{aligned} & 0 \\ & \text { v } \\ & \text { U } \\ & 3 \end{aligned}$		$\begin{aligned} & \text { r } \\ & \text { 首 } \\ & 3 \end{aligned}$		$\begin{aligned} & m \\ & \stackrel{y}{0} \\ & \stackrel{0}{3} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{u} \\ & \text { \# } \\ & \stackrel{\sim}{3} \end{aligned}$	n － 0 3	6 $\stackrel{4}{4}$ U	
$\begin{aligned} & \text { ヘ } \\ & n \\ & \\ & \end{aligned}$		Angles		Properties of Triangles／ Quadr＇s		Construction and Loci		Equivalent Fractions			Fraction， Decimals， Percentages		Mult， divide \＆ Fractions of amounts				
$\begin{aligned} & \frac{n}{\pi} \\ & \frac{\pi}{0} \end{aligned}$	$\begin{aligned} & \stackrel{-}{u} \\ & \ddot{\#} \\ & \stackrel{1}{3} \end{aligned}$	N \＃ U 3	m u 3		n ㅡ U 3	6 $\stackrel{\rightharpoonup}{0}$ 0 3			N － U 3	m u U 3	$\stackrel{\rightharpoonup}{*}$ $\stackrel{\text { U }}{0}$ U	n $\stackrel{3}{0}$ $\stackrel{1}{3}$	6 u U 3	N U U 3	$\begin{aligned} & \frac{\pi}{\hat{\pi}} \\ & \frac{\text { O}}{\bar{O}} \\ & \text { 오 } \end{aligned}$		
$\begin{aligned} & \text { エ } \\ & \pm \\ & \stackrel{1}{む} \\ & \tilde{\sim} \end{aligned}$	Algebra： BIDMAS， Substitution		Algebra： simplify， expand， factorise		Coordinates \＆lines		$\begin{aligned} & \overline{\bar{\pi}} \\ & \frac{1}{1} \\ & \underset{\lambda}{\pi} \end{aligned}$	Percentage．．． of amount， change， reverse．．．		AQA	ct 3	Probability					

Year 8
 2021－22

Menu

$\begin{aligned} & \text { 亗 } \\ & \underline{z} \end{aligned}$	$\begin{aligned} & -\quad \\ & \ddot{u} \\ & \text { \# } \\ & 3 \end{aligned}$	$\begin{aligned} & N \\ & u \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & m \\ & \text { y } \\ & \text { य } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{u} \\ & \stackrel{1}{\#} \\ & \stackrel{1}{3} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \ddot{\#} \\ & \text { \# } \\ & 3 \end{aligned}$	$\begin{aligned} & 0 \\ & \text { u } \\ & \text { \& } \\ & 3 \end{aligned}$	$\begin{aligned} & E \\ & \pm \\ & \pm \\ & 4 \end{aligned}$	$\begin{aligned} & \frac{E}{U} \\ & \pm \\ & \frac{4}{0} \end{aligned}$	$\begin{aligned} & -\quad \\ & \ddot{u} \\ & \text { \# } \\ & 3 \end{aligned}$	$\begin{aligned} & N \\ & \underset{\sim}{0} \\ & \sim \\ & 3 \end{aligned}$	$\begin{aligned} & m \\ & \stackrel{y}{\#} \\ & \stackrel{y}{3} \end{aligned}$	$\stackrel{\rightharpoonup}{*}$ U U 3		$\begin{aligned} & 0 \\ & \text { v } \\ & \text { U } \\ & 3 \end{aligned}$	N U U 3		
	Primes， Indices， squares and cubes		AQA test 1				エ	$\begin{aligned} & 1 \\ & \frac{1}{む} \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	Ratio			Direct \＆ Inverse Proportion		Unit conversi ons			
			Venn diagrams and sets		Add and Subtract fractions		$\begin{aligned} & \text { مٌ } \\ & \text { O} \\ & 0 \end{aligned}$										
	$\begin{aligned} & n \\ & \frac{n}{0} \\ & \frac{\pi}{0} \\ & \text { 오 } \\ & \sqrt{0} \\ & \tilde{x} \end{aligned}$	$\begin{aligned} & -\quad \\ & \frac{2}{0} \\ & \text { U } \end{aligned}$	$\begin{aligned} & N \\ & \stackrel{y}{U} \\ & \text { ¿ } \end{aligned}$	$\begin{aligned} & m \\ & \ddot{\#} \\ & \frac{1}{3} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{u} \\ & \stackrel{4}{4} \\ & \vdots \end{aligned}$	n － \＃ 3	$\begin{aligned} & 0 \\ & \text { u } \\ & \text { \# } \\ & 3 \end{aligned}$		r － \＃ 3	N － U 3	m u U 3	Ј U U 3	n u U 3	¢ $\stackrel{\text { U }}{ }$ U 3			
		Pythagoras			AQA test 2				Change subject of formula			Construct and solve linear eqns					
					Areas \＆ Perimeters												
$\frac{n}{0}$	$\begin{aligned} & -\quad \\ & \text { U } \\ & \text { U } \\ & 3 \end{aligned}$	$\begin{aligned} & N \\ & \text { U } \\ & \text { U } \end{aligned}$	$$	\pm － 0 3	■ － U 3	0 － 3			N － U 3	m u 0 3	\pm － 0 3	L － 0 3 3	6 $\stackrel{4}{0}$ U 3	N U U 3			
조지	Sequences			Angle facts			$\stackrel{\pi}{\pi}$	Transformations， similarity \＆ congruence			AQA test 3						
$\begin{aligned} & \tilde{\sim} \\ & \tilde{\oplus} \end{aligned}$				$\underset{\Sigma}{\boldsymbol{\pi}}$		$\begin{aligned} & \text { D } \\ & \text { netr } \end{aligned}$	Geometry extension										

YEAR 7

Place value and estimation

N 1 - understand and use place value for decimals, measures and integers of any size
N2 - order positive and negative integers, decimals and fractions; use the number line as a model for ordering of the real numbers; use the symbols $=, \neq,<,>, \leq, \geq$

N13 - round numbers and measures to an appropriate degree of accuracy [for example, to a number of decimal places or significant figures]

N14 - use approximation through rounding to estimate answers and calculate possible resulting errors expressed using inequality notation $a<x \leq b$

Addition and Subtraction

N4 - use the our operations, including formal written methods, applied to integers, decimals, proper and improper fractions, and mixed numbers, all both positive and negative

Including but not limited to...

- Mental calculations,
- partitioning,
- column method,
- use of number lines,
- complements / number bonds

[^0]
Applications of addition and subtraction

- Perimeter and other applications ??? Ref to mymaths
- word problems,
- money calculations,

For very low attainers, knowledge of synonyms below. Match the phrase to the correct

Multiplication and Division

Menu

- Multiply and divide (including decimals and negatives)

N4 - use the four operations, including formal written methods, applied to integers, decimals, proper and improper fractions, and mixed numbers, all both positive and negative

Including but not limited to...

- Mental calculations,
- Doubling and halving
- Multiply and divide by powers of 10
- Written methods for multiplication
- Written methods for division
- Division where the answer is a decimal
(dividing by a decimal after covering fractions...?)

ICCAMS

Consider LP1 (lower ability), LP2 and LP15

Suggestions for further depth:
Explore and compare different multiplication methods e.g vedic, Russian peasant, Egyptian, napiers bones etc

Applications of Multiplication and Division

- Applications (Area of rectangle and triangle, calculating the mean etc)

ICCAMS

Consider LP6, LP7, LP8, Lesson 10B, LP11 and LP17
Note: all of these lessons explore multiplicative relationships. Functional relationships versus scalar relationships and different representations (e.g. ratio table, double number line and Cartesian graph

Suggestions for further depth:

Factors, HCF, Multiples and LCM

N3 - use the concepts and vocabulary of prime numbers, factors (or divisors), multiples, common factors, common multiples, highest common factor, lowest common multiple, prime factorisation, including using product notation and the unique factorisation property

Suggestions for further depth:

Geometry: Angles

Menu

- Draw, measure and name angles, find unknown angles (straight lines, at a point, vertically opposite)

Suggestions for further depth:

Geometry: Triangles and Quadrilaterals

- Properties of triangles and quadrilaterals (Inc. Intro to Pythagoras)

Suggestions for further depth:

Use geoboards (http://www.mathlearningcenter.org/web-apps/geoboard/) to find different types of triangles with a given area.

Geometry: Constructions and Loci

- Construction and Loci

[^1]
Buffer Week

- This week could be used for the following;
- TBC
- Equivalent fractions (inc. mixed numbers) to compare and order fractions

ICCAMS
 Consider LP9

Suggestions for further depth:

- Multiply and divide fractions, fraction of a quantity

Suggestions for further depth:
"show me an equivalent calculation to $18 \div \frac{3}{5}$ which uses/does not use fractions" etc.

- Order of operations (BIDMAS) and substitution

ICCAMS

Consider LP4, LP3 and LP13 (harder version of LP3 with substitution), LP12, Lesson 19A, Lesson 21A (extension of 4B)

Suggestions for further depth:

- Simplify algebraic expressions, linear expansion and factorisation

ICCAMS
 Consider LP4, LP14,

Suggestions for further depth:
Form expressions from worded problems inc. area, perimeter, mean etc

- Co-ordinates and plotting linear graphs

ICCAMS
 Consider LP5, LP3, LP13, Lesson 4B, Lesson 18B and Lesson 21A

Suggestions for further depth:

- Convert between percentages, vulgar fractions and decimals

ICCAMS

Consider LP9 and lesson 16B

Suggestions for further depth:

- Percentage of a quantity, percentage change and reverse percentages

ICCAMS
 Consider Lesson 16A

Suggestions for further depth:

Kieran, Tyrell and Sian were sharing a pizza. Kieran's share is 80\% of Tyrell's. Sian's was 25% the size of Kieran/s. What percentage of the pizza did they each have?

Statistical diagrams

- Construct and interpret statistical diagrams including pictograms, bar charts, line graphs, frequency polygons, scatter graphs, stem and leaf, pie charts etc

Suggestions for further depth:
Misleading diagrams and anomalies, comparing pie charts

Probability

- Probability scale and describe using words
- Sum of probabilities
- Calculate simple probabilities as fractions/decimals
- Simple probability experiments
- Create sample space diagrams for combined events

Suggestions for further depth:

Monty Hall problem

YEAR 8

Further Number 1

- Primes and indices inc. prime factorisation to find LCM, HCF, squares and cubes

Suggestions for further depth:
Find a multiple of 5 and a multiple of 6 that have a difference of 11 . Find a multiple of 7 and a multiple of 4 that add to 100 etc.

Further Number 2

- Venn diagrams and enumerating sets

Suggestions for further depth:

Further Number 3

- Add and subtract fractions

Suggestions for further depth:

- Change the subject of a formula (algebraic fluency and manipulation)

ICCAMS

Consider LP13, LP19 and LP14

Suggestions for further depth:
Investigate how many squares (of any size) there are on a chessboard.
Can every integer be written as a sum of consecutive numbers? E.g $12=3+4+5$

- Construct and solve linear equations (inc. from real-world situations)

ICCAMS

Consider LP18 and Lesson 21B

Suggestions for further depth:
Investigate how many squares (of any size) there are on a chessboard.
Can every integer be written as a sum of consecutive numbers? E.g $12=3+4+5$

- Arithmetic and geometric sequences and nth term
- Quadratic sequences (HA only)

Suggestions for further depth:
Investigate how many squares (of any size) there are on a chessboard.
Can every integer be written as a sum of consecutive numbers? E.g $12=3+4+5$

Areas and Perimeters

- Areas and perimeters of parallelograms, trapeziums and composite figures

ICCAMS
 Consider LP2

Suggestions for further depth:
4 rods, 2 of length $a, 2$ of length b, are linked to form a kite. The links are movable so the angles can change. What is the maximum area of the kite?

Angle Facts

- Find unknown angles (including parallel lines)

Suggestions for further depth:

Pythagoras (HA only)

FOR HIGHER ATTAINING STUDENTS ONLY

- Use Pythagoras' Theorem to find any missing side in a right angle triangle
- Use Pythagoras' Theorem to prove if a triangle is right angled
- Solve problems involving Pythagoras' Theorem.

Suggestions for further depth:
3D applications. Use of halving rectangles or isosceles triangles.
e.g.
B Find AC
Find the height

Proportional reasoning 1

- Ratio (equivalent, of a quantity)

ICCAMS

Consider LP6, LP7, LP8, Lesson 10B, LP11 and LP17
Note: all of these lessons explore multiplicative relationships. Functional relationships versus scalar relationships and different representations (e.g. ratio table, double number line and Cartesian graph

Suggestions for further depth:

Proportional reasoning 2

- Direct and inverse proportion (inc. unitary method)

ICCAMS

Consider LP6, LP7, LP8, Lesson 10B, LP11 and LP17
Note: all of these lessons explore multiplicative relationships. Functional relationships versus scalar relationships and different representations (e.g. ratio table, double number line and Cartesian graph

Suggestions for further depth:
Which is the better special offer? 20% extra free or 15% off

Proportional reasoning 3

- Conversion of metric units
- Conversion of time units
- m / s to km / h

Suggestions for further depth:
Conversion of area and volume units (LAV scale factors)

- Transformations, congruence and similarity (inc. unit conversions LAV)

```
ICCAMS
Consider Lesson 8B
```

Suggestions for further depth:

3D geometry (5a)

- Identify 3D shapes, draw their nets, find their volume (inc. cuboid, prism, cylinder, composite solids)
- To encompass:
- Rounding, significant figures and estimation

Suggestions for further depth:
The areas of the faces of a cuboid are 3,12 and $25 \mathrm{~cm}^{2}$.

Further geometry (5b) (HA only)

- Circumference and area of a circle (may stop at this for LA students)
- Volume of cylinder, cone
- To encompass:
- Rounding, significant figures and estimation

Suggestions for further depth:
Which is a better fit, a square peg in a round hole or a round peg in a square hole?

[^0]: Suggestions for further depth: Investigate different bases such as binary, dozenal, hexadecimal etc. Consider the advantages and disadvantages of addition and subtraction in these bases. See MEP Base Arithmetic

[^1]: Suggestions for further depth:

